LNMUonline.com

Mathematics (Hons.) Paper-I (Arts/Sc.)

Answer any six questions.

- Define a countable set and prove that countable union of countable sets is countable.
- (a) Define a partial order relation on a set and illustrate the concept with two examples.
 - (b) Define a total order relation on a set and show by an example that a partially ordered setmay fail to be totally ordered.
- 3. (a) Define addition of cardinal numbers and prove $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$, where α , β , γ are any three cardinal numbers.
 - (b) Define the concept of ordinal number and illustrate itby a suitable example.
- 4. (a) Define a group and prove that identity element in a group is unique.
 - (b) If a and b are any two elements of a group G then prove that $(ab)^{-1} = b^{-1} a^{-1}$, where a^{-1} , b^{-1} and $(ab)^{-1}$ respectively stand for inverses of a, b and ab in G.
- (a) Define centre of a group and prove that centre of a group G is a normal subgroup of G.
 - (b) If G is a group and a, $b \in G$ then prove that $(ab)^2 = a^2b^2$ if and only if G is abelian.
- Define homomorphism of a group. State and prove fundamental theorem of homomorphism groups.
- 7. Define transpose of a matrix. If A and B are any two square matrices of the same order then prove that (AB)' = B'A', where A', B' and (AB)' respectively denote the transposes of A, B and AB, LNMUonline.com
- 8. Find the characteristic equation of the matrix:

$$A = \begin{bmatrix} 6 & -2 & 2 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Also find the eigen value of A.

9. Show that the system linear equations:

$$5x + 3y + 7z = 4$$

 $3x + 26y + 2z = 9$

$$7x + 2y + 10z = 5$$

are cosistent and solve them.

- 10. (a) If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of the equation $x^n 1 = 0$, then prove that $(1 \alpha_1) (1 \alpha_2) \ldots (1 \alpha_n) = 0$.
 - (b) Prove that in an equation with real coefficients, imaginary roots occur in conjugate pairs.
- 11. (a) Find the condition that the roots of the equation $x^3 px^2 + qx r = 0$ be in H.P.
 - (b) If α , β , γ are the roots of the equation $x^3 + p^2 + qx + r = 0$ then find the value of the symmetric function $\sum \alpha^2 \beta$ of the roots of the given equation.
- 12. Solve the equation $x^3 9x + 28 = 0$ by Cardon's method.