LNMUonline.com

Mathematics (Hons.) Paper-II (Sc. & Arts)

Answer any six questions.

- Find the equation of a pair of tangents from an external point (x1, y1) to the conic represented by the equation ax² + 2hxy + by² + 2gx + 2fy + c = 0.
- 2. (a) Prove that two confocal conics intersect at right angles.
 - (b) Prove that one and only one conic of a confocal system will touch a given straight line.
- 3. (a) Obtain the polar equation of a conic in the standard form $\frac{l}{r} = 1 + e \cos\theta$, where *l* is the semi latus rectum, e the ecentric and focus of the conic being taken as pole.
 - (b) Show that the equations $\frac{l}{r} = 1 + e \cos\theta$ and $\frac{l}{r} = -1 + e \cos\theta$ represent the same conic.
- 4. Find the polar equation of normal to the conic $\frac{l}{r} = 1 + e \cos\theta$ the point $\theta = \alpha$..
- (a) Find the length and equations of the line of shortest distance between two skew lines.
 - (b) The intercepts made by a plane made on the coordinate axes are in the ratio 2:
 - 3: 4. If the plane passes through (5, 0, -2), find the equation of the plane.
- 6. (a) Find the condition that two given straight lines may be coplanar.
 - (b) Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanor.
- 7. (a) Find the condition that a given plane ax + by + cz + d = 0 may touch the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d_1 = 0$.
 - (b) A sphere of radius r passes through origin and meets the axes in A, B and C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4r^2$.
- 8. Define a Central Conicoid. Find the condition that the plane 1x + my + nz = p may touch the conicoid $ax^2 + by^2 + cz^2 = 1$. LNMUonline.com
- 9. (a) State and prove De Moivre's theorem for a rational index.
 - (b) Obtain the nth roots of unity.
- 10. (a) Prove that $\log (\alpha + i\beta) = \frac{1}{2} \log (\alpha^2 + \beta^2) + i \tan^{-1} \frac{\beta}{\alpha}$.
 - (b) Express $(\alpha + i\beta)^{x+iy}$ in the form of A + iB.
- 11. (a) Sum to n terms the series $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{13} + \dots + \tan^{-1} \frac{1}{1 + n(n+1)}$
 - (b) Sum the series $\sin \theta \frac{\sin 2\theta}{2} + \frac{\sin 3\theta}{3} \dots$ to inf.
- Express sinθ as an infinite product.