LNMUonline.com

Mathematics (Hons.) Paper-III (Sc./Arts)

Answer any six questions.

(a) State and prove Leibnitz's theorem.

(b) If $y^{\sqrt{m}} + y^{-\sqrt{m}} = 2x$, prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$. (a) State and prove Euler's theteem on homogeneous functions of two independent variables.

(b) If $u = x^2 \sin^{-1} \left(\frac{y}{x} \right) + e^{-x/x}$, prove that $: x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 2 (u - e^{-y/x})$

(a) State and prove Maclaurin's Series and expand cos x in powers of $x - \frac{\pi}{A}$.

(b) Prove that $\tan \phi = r \frac{d\theta}{dr}$, where the symbols have their usual meanings. Also obtain the pedal equation of the curve $r^m = a^m \cos m\theta$.

4. (a) Find the radius of curvature for the pedal curve p = f (r). Also find the radius of curvature for the curve $r = a(1 - \cos\theta)$ and show that $\frac{p^2}{r}$ is a constant.

(b) Prove that the chord of curvature parallel to the axis of y for the curve $y = a \log \sec y$ $\left(\frac{x}{a}\right)$ is of constant length.

huate any two of the following: LNMUonline.com

(a)
$$\int \frac{dx}{(1+x^2)\sqrt{(1-x^2)}}$$
 (b) $\int e^x \frac{(1+x^2)}{(1+x)^2} dx$ (c) $\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$

(a) Evaluate $\int_{0}^{\infty} \cos^{n} x \cos nx \, dx$, where n is a positive integer.

(b) Show that $\int_{0}^{\infty} \frac{\log (1+x^2)}{(1+x^2)} dx = \pi \log 2$

7. (a) Find the entire length of the astroid x^{2/3} + y^{2/3} = a^{2/3}.
(b) Find the area of the loop of the curve ay² = x² (a - x).
8. (a) Find the volume of the solid generated by revolving the cardioid r = a (1 + cos θ) about the initial line.

(b) Prove that $n\left(n+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2n-1}}$ 2n.

(a) State and prove Taylor's theorem with various forms of remainders.

(b) Find the maxima and minima of the function $x^3 + y^3 - 12x - 3y + 20$. 10. (a) If a function f is continuous in a closed interval [a, b] then it possesses greatest and

(b) Prove that f (x) = sin x² is not uniformly continuous on [0, ∞ [.

11. (a) State and prove Cauchy general principle of Convergence.

(b) Apply Cauchy's Principle of Convergence to prove that the sequence $\langle f_n \rangle$ defined by: $f_n = 1 + \frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n-2}$ is not convergent.

(a) State and prove Raabe's test.

(b) Test the convergence of the series whose nth term is $\frac{\sqrt{(n+1)} - \sqrt{(n-1)}}{n}$

LNMUonline.com