Mathematics (Hons.) Paper-III (Sc./Arts)

Answer six questions.

 (a) State ∈ -δ definition of limit of a function. Prove that every differentiable function is continuous.

(b) If $y = e^{a \sin^{-1}x}$, prove that : $(1 - x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2 + a^2) y_n = 0$ 2. (a) If f(x) possesses continuous derivatives of every order in the interval (x, x + h), then prove that $(x + h) = f(x) + h f'(x) + \frac{h^2}{12} f''(x) + ... + \frac{h''}{\ln} f''(x) + inf.$

(b) Obtain by Maclaurin's Theorem, the first five terms in the expansion of log (1 +

(a) Find the condition that the line $x \cos \alpha + y \sin \alpha = p$ may touch the curve $x^m y^n = a^{m+n}$

(b) Prove that for the polar curve, the radius of curvature is given by:

$$p = \frac{(r^2 + r_1^2)^3/2}{r^2 + 2r_1^2 - rr_2}$$
 LNMUonline.com

4. (a) If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$. (b) If u = f(x, y) is a homogeneous function of degree n, then prove that:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} x}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n (n-1) u$$

Evaluate any two of the following: .

(a)
$$\int \frac{dx}{\sqrt{(x-\alpha)(\beta-x)}}$$

(b)
$$\int \frac{dx}{5+4\cos x}$$

(c)
$$\int \frac{xe^x}{(1+x)^2} dx$$

6. Evaluate:

(a)
$$\int_{0}^{\pi} \frac{dx}{a + b \cos x}$$
 $(a > b > 0)$ (b) $\int_{0}^{\pi} \log \sin x \, dx$

(a) Find the area of the loop of the curve x³ + y³ = 3axy.
(b) Find the area of the loop of the curve r² = a² cos 2θ.

(a) Find the area of surface of a cone whose semi-vertical angle is α and base a, circle of

(b) The cardioid $r = a(1 - \cos\theta)$ revolves about initial line. Find the volume of the figure

formed.

(a) State and prove Lagrange's method of undetermined multipliers.

(b) Find the minimum value of $x^2 + y^2 + z^2$ under the condition ax + by + cz = p.

10. (a) If $\lim_{n \to \infty} a_n = l$,, then prove that $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = l$

(b) If $a_n > 0$, and $\lim a_n = l$. Show that $\lim (a_1, a_2 \dots a_n)^{V_n} = l$.

11. (a) State and prove Logarithmic test.

(b) Test the convergence of the series $\frac{1}{\log 2}$ + $\frac{1}{(\log 3)^p}$ + + $\frac{1}{\log n}$ +

12. (a) State and prove D'Morgan's and Bertrands Test

(b) Test the convergence of the series $\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} x + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} x^2 + \dots$

LNMUonline.com