Mathematics (Hons.) Paper-VIII (Fun.Anal.)

Answer any five questions. LNMUonline.com

- (a) Define 'norm' on a linear space E. Prove that every normed linear space E is a
 metric space with respect to the metric d defined by d (x, y) = || x y || for all x, y
 ∈ E.
 - (b) Prove that vector addition is a continuous function in the context of normed linear space.
- Prove that the set Cn of all n-tuples z = (z1, z2,, zn) of complex numbers is a complex Branch space if we define for

$$z = (z_1, z_2,, z_n), w = (w_1, w_2, ..., w_n) \in C^n \text{ and } \lambda \in C,$$

$$(z_1, z_2,, z_n) + (w_1, w_2,, w_n) = (z_1 + w_1, z_2 + w_2,, z_n + w_n)$$

$$\lambda (z_1, z_2,, z_n) = (\lambda z_1, \lambda z_2,, \lambda z_n \text{ and } ||z|| = \left(\sum_{i=1}^n |z_i|^2\right)^{V_2} \text{ as norm of } z.$$

- 3. (a) State and prove Minkowski's Inequality.
 - (b) Construct a metric space which is not a normed linear space.
- (a) A linear transformation T from a normed linear space E into a normed linear space F is continuous iff it is continuous at the origin.
 - (b) A linear transformation T from a normed linear space E into a normed linear space F is continuous iff T is bounded in the sense that there exists a positive real number m such that : $||T(x)|| \le m ||x||$ for all $x \in E$.
- 5. Prove that dual space of every normed linear space is a Branch space.
- 6. (a) State and prove the Lemma of F. Ries z.
 - (b) Prove that conjugate space of p is q.
- 7. (a) Define Hilbert Space R^n . Prove that real linear space Rn is a Hilbert space with

respect to inner product defined by
$$(x, y) = \sum_{i=1}^{n} x_i y_i$$
 for $(x_1, x_2,, x_n), y(y_1, y_2,, y_n)$ of Rn. LNMUonline.com

- (b) Prove that inner product function is jointly continuous.
- 8. (a) State and prove Cauchy-Schwartz inequality in a Hilbert space.
 - (b) State and prove Polarisation identity in a Hilbert space.
- 9. (a) Prove that a sphere in a normed linear space is a convex set.
 - (b) Prove that intersection of any family of convex sets is a convex set but union of two convex sets may not be a convex set.
- 10. State and prove Projection theorem in a Hilbert space.

LNMUonline.com